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Abstract: Anxiety disorders affect over 300 million people worldwide, highlighting the urgent need 
for efficient drug discovery. Current treatments target neurotransmitter transporters, but traditional. 
development is slow and costly. We propose a fully connected neural network framework that 
integrates molecular descriptors from small molecules (via Mordred) with structural features of 
transporters predicted by AlphaFold. This multimodal representation enables accurate prediction of 
drug-transporter binding affinity. Experiments show that our model outperforms. classical machine 
learning baselines and that combining ligand and protein features yields the best results. The 
framework provides a scalable tool for screening candidate anxiolytic drugs potentially accelerating 
discovery and reducing trial-and-error costs. 

1. Introduction 
Anxiety and diminished self-confidence are increasingly recognized as serious threats to. 

individual well-being and global public health. According to the World Health Organization,. 
approximately 301 million people worldwide suffer from anxiety disorders, representing about 4% 
of the global population [1]. Such conditions not only impair daily functioning, but also increase risks 
of comorbid psychiatric illnesses and reduced quality of life. 

Neurotransmitters are chemical messengers that mediate communication between neurons in the 
central nervous system. After being released into the synaptic cleft, neurotransmitters bind to post-
synaptic receptors, and their signaling is terminated primarily by reuptake through neurotransmitter 
transporters [2]. These transporter proteins tightly regulate neurotransmitter concentration and 
duration of action. Current anxiolytic drugs often target transporter activity, either by inhibiting 
reuptake to increase neurotransmitter levels in the synaptic cleft or by modulating transporter function 
to rebalance neurotransmission. Classic examples include selective serotonin reuptake inhibitors 
(SsRIs) such as fluoxetine and sertraline, and serotonin-norepinephrine reuptake inhibitors (SNRIs) 
such as venlafaxine and duloxetine [3]. 

With the rapid advancement of deep learning, artificial intelligence (AI) has made groundbreaking 
contributions in the life sciences. In 2024,the Nobel Prize in Chemistry was awarded to the developers 
of AlphaFold, a deep learning model that revolutionized protein structure prediction, underscoring 
the transformative role of AI in computational biology [4, 5]. These breakthroughs have opened new 
avenues for drug discovery, particularly in understanding protein-ligand interactions. 

In parallel, quantitative structure-activity relationship (QSAR) modeling has long served as a 
computational strategy for correlating molecular structure with biological activity [6]. Integrating 
deep learning with QSAR allows for large-scale screening of small molecules with predicted high 
affinity for biological targets, such as neurotransmitter transporters. In the context of developing 
anxiolytic and confidence-enhancing drugs, AI-driven approaches could greatly accelerate the 
identification of candidate compounds and expand therapeutic options for patients. 

Previous research on transporter-targeted drug discovery has provided valuable insights, but 
existing methods face two major limitations: (1) insuficient generalizability, as most models are 
designed for individual transporters and do not generalize across protein families; and (2) over-
reliance on molecular descriptors alone, neglecting essential protein features such as three 
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dimensional structure and physicochemical properties, which are critical for accurate affinity 
prediction [7]. 

In this study, we propose an integrated computational framework that combines moleculan 
descriptors of small molecules with structural features of neurotransmitter transporters, as illustrated 
in Fig. 1. Candidate molecules were represented in SMILES format and processed using the Mordred 
library to extract geometric, topological, and physicochemical descriptors. [8]. Protein structures of 
anxiety-related neurotransmitter transporters (including serotonin and norepinephrine transporters) 
were predicted using AlphaFold [4]. These molecular and protein features were fused in a fully 
connected neural network to predict binding affinities. We divided the dataset into training (80%) and 
external testing (20%), applied five-fold crossvalidation on the training set, and evaluated 
performance using multiple predictive metrics. Our results demonstrate that incorporating protein 
features significantly improves predictior accuracy, offering a scalable approach for screening 
anxiolytic drug candidates.  

The main contributions of this work can be summarized as follows: 
 We propose an integrative framework that combines small-molecule descriptors with protein 

structural features predicted by AlphaFold, enabling a more comprehensive representation of ligand-
transporter interactions.  
 Unlike previous QSAR models that only consider molecular descriptors, our method explicitly 

incorporates the spatial and physicochemical characteristics of neurotransmitter transporters, thus 
improving affinity prediction accuracy and model generalization.  
 We systematically evaluate our model across multiple neurotransmitter transporters related to 

anxiety regulation (e.g., serotonin and norepinephrine transporters), using fivefold cross-validation 
and external testing to ensure robustness.  
 Our approach provides a scalable computational tool for accelerating anxiolytic drug discovery, 

offering a potential strategy to reduce the trial-and-error process and multitarget side effects in current 
pharmacological research 

 

Figure 1 Overall workflow of the proposed framework for transporter-drug interaction analysis. 

2. Dataset 
2.1. Data sources 

We compiled ligand-transporter binding data from four open resources: BindingDB 
ChEMBL,PubChem and ZINC [9, 10, 11,12]. We focused on human neurotransmitter transporters 
strongly implicated in mood and anxiety regulation, such as the serotonin transporter 
(SLC6A4),norepinephrine transporter (SLC6A2),dopamine transporter (SLC6A3),vesicular 
monoamine transporter (SLC18A2), GABA transporter (SLC6A1) and glycine transporter (SLC6A9). 
UniProt was used to map target identifiers and sequences [13]. Table 1 summarizes the transporters 
included in this study. 

2.2. Data collection and curation 
Data were retrieved programmatically via API and bulk downloads. For transporters we retained 
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only records that were clearly mapped to human targets (UniProt mapping) and that contained direct 
binding or inhibition measurements (Ki, Kd, IC50, EC50 or similar). For small molecules, canonical 
SMILES served as the primary representation. Additional smal molecules were randomly sampled 
from ZINC to balance the dataset and generate negative examples [12]. 

All molecule structures were standardized using RDKit [14] following ChEMBL’s curation 
guidelines [15]. Standardization included salt/solvent removal, charge normalization, and canonical 
SMILES generation. Records were filtered to retain only numeric afinity values and duplicate ligand-
target pairs were aggregated by taking the median of converted affinities. Duplicates and 
stereochemical inconsistencies were removed. This curation strategy aligns with. best practices 
recommended by ChEMBL and BindingDB. 

2.3. Label processing 
Afinity measurements were unified on a nanomolar (nM) scale. When assay parameters permitted, 

IC50 values were converted to estimated. K_i using the Cheng-Prusoff relation [16]. Both raw affinity 
values and log-transformed labels (pAffinity = -log10 (Affinity in M)) were stored for modeling. This 
dual labeling facilitated both regression and classification tasks. 

2.4. Molecular descriptor extraction 
Molecular features were extracted from canonical SMILES. Two-dimensional descriptors were 

derived directly from the SMILES strings, covering constitutional, topological, and fingerprint-like 
properties. For three-dimensional descriptors, low-energy conformers were generated using RDKit’s 
UFF/MMFF force fields, followed by Mordred descriptor computation [17]. To ensure feature 
stability, descriptors with over 30 % missing values or near-zero variance were removed, and 
remaining missing entries were imputed with the median. Highly correlated descriptors (Pearson r > 
0.95) were filtered to reduce collinearity. Finally, features were standardized (z-score scaling) using 
scikit-learn. Table 1 summarizes the descriptor categories. 

2.5. Protein structural and sequence features 
Protein sequences were obtained from UniProt [13], and when experimental structures were 

unavailable, AlphaFold predictions were used [18]. From sequences, we extracted amino acid 
composition, molecular weight, isoelectric point, and other physicochemical summaries. Structural 
features included secondary-structure composition (via DSsP [18]), solvent-accessible surface area 
and residue exposure statistics (via FreeSASA [19]), radius of gyration, and contact-map summaries. 
Known functional motifs and transmembrane helix counts from UniProt annotations were also 
included. These features ensured that both sequence-level and structure-derived properties were 
incorporated into the model (Table 2). 

Table 1 List of neurotransmitter transporters studied, with gene names and UniProt identifiers. 
Transporter Gene UniProt ID Main function 
Serotonin transporter SLC6A4 P31645 Uptake of serotonin (5-HT) 
Norepinephrine transporter SLC6A2 P23975 Uptake of norepinephrine 
Dopamine transporter SLC6A3 Q01959 Uptake of dopamine 
Vesicular monoamine transporter 2 SLC18A2 Q05940 Storage of monoamines in vesicles 
GABA transporter 1 SLC6A1 P30531 Uptake of GABA 
Glycine transporter 1 SLC6A9 P48067 Uptake of glycine 

Table 2: Descriptor categories extracted for ligands and transporters. 
Category Description 
Molecular 2D descriptors Constitutional, topological, fingerprint counts 
Molecular 3D descriptors Geometrical, charge-related, conformer-derived features 
Protein sequence features Amino acid composition, molecular weight, pI 
Protein structural features Secondary structure fractions, SASA, radius of gyration 
Contact-map summaries Mean/variance of pairwise residue distances 
Functional annotations Motifs, TM helices from UniProt 

483



3. Methods 
In this work, we designed a fully connected neural network (FCNN) to predict the binding affinity 

between small molecules and neurotransmitter transporters. The model integrates. molecular 
descriptors extracted from ligands and structural features derived from protein sequences, producing 
a unified representation for regression-based affinity prediction, as illustrated in Fig. 2. 

 

Figure 2 Schematic architecture of the fully connected neural network(FCNN).The input consists of 
concatenated molecular descriptors and protein structural features, which are processed by multiple 

hidden layers to produce a continuous affinity prediction. 

Let 𝐱𝐱mol ∈ ℝ𝑑𝑑𝑚𝑚 denote the molecular feature vector obtained from Mordred descriptors, where 
𝑑𝑑𝑚𝑚 is the number of selected ligand descriptors. Similarly, let 𝐱𝐱prot ∈ ℝ𝑑𝑑𝑝𝑝 denote the protein feature 
vector extracted from sequence and structural analysis, where 𝑑𝑑𝑝𝑝 is the number of protein features. 
The final input vector is formed by concatenation: 

𝐱𝐱 = �𝐱𝐱mol ∥ 𝐱𝐱prot� ∈ ℝ𝑑𝑑𝑚𝑚+𝑑𝑑𝑝𝑝 .                                                            (1) 

The FCNN consists of 𝐿𝐿 hidden layers.For each hidden layer 𝑙𝑙 ∈ {1,2, … , 𝐿𝐿} , the transformation 
is defined as 

𝐡𝐡(𝑙𝑙) = 𝜎𝜎�𝐖𝐖(𝑙𝑙)𝐡𝐡(𝑙𝑙−1) + 𝐛𝐛(𝑙𝑙)� ,                                                     (2) 

where 𝐡𝐡(0) = 𝐱𝐱 ,  𝐖𝐖(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙×𝑑𝑑𝑙𝑙−1 and 𝐛𝐛(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙 are the learnable weights and biases of the 𝑙𝑙 -th 
layer, and 𝜎𝜎(⋅) is the non-linear activation function. In our implementation, the rectified linear unit 
(ReLU) was employed: 

𝜎𝜎(𝑧𝑧) = max(0, 𝑧𝑧).                                                       (3) 
Dropout layers were applied between hidden layers to reduce overfitting, and batch normalization 

was used to stabilize training. The final prediction is produced by a linear projection from the last 
hidden representation 

𝑦𝑦� = 𝐖𝐖(𝐿𝐿+1)𝐡𝐡(𝐿𝐿) + 𝐛𝐛(𝐿𝐿+1),                                              (4) 

where 𝑦𝑦� ∈ ℝ corresponds to the predicted binding affinity 
The ground-truth label 𝑦𝑦 is the experimentally measured binding affinity, either in nanomolar (nM) 

scale or transformed into the logarithmic form 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −log10(Affinity in M).                                    (5) 
The network is trained to minimize the mean squared error (MSE) between the predicted affinities 

𝑦𝑦�𝑖𝑖 and the true values 𝑦𝑦𝑖𝑖 

ℒMSE = 1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 ,                                                         (6) 

where 𝑁𝑁 is the number of training samples.This loss encourages the model to produce predictions 

484



close to the experimental affinities, while the pAf finity transformation provides a numerically stable 
scale for regression 

4. Experiments 
4.1. Implementation Details 

All models were implemented in Python using PyTorch (version 2.0).Molecular descriptors were 
computed with Mordred, and protein features were extracted from UniProt sequences and. 
AlphaFold-predicted structures. The input vectors were standardized with zero mean and unit. 
variance before feeding into the network. The fully connected neural network consisted of three 
hidden layers with 512,256,and 128 units,each followed by ReLU activation and dropout 
(𝑝𝑝 = 0.3) .Training was performed with the Adam optimizer( (𝛽𝛽1 = 0.9 ,  𝛽𝛽2 = 0.999 )and an initial 
learning rate of 1 × 10−3 .The batch size was set to 64, and early stopping was applied with a patience 
of 20 epochs. Five-fold cross-validation was conducted on the training set, and the best model was 
evaluated on the independent test set. 

4.2. Evaluation Metrics 
To evaluate predictive performance, we used multiple regression and classification metrics For 

regression, the following metrics were reported 

RMSE = �1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 ,

MAE = 1
𝑁𝑁
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑁𝑁
𝑖𝑖=1 ,

𝑟𝑟 = ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦‾)𝑖𝑖 �𝑦𝑦�𝑖𝑖−𝑦𝑦�‾�

�∑ (𝑦𝑦𝑖𝑖−𝑦𝑦‾)2𝑖𝑖 �∑ �𝑦𝑦�𝑖𝑖−𝑦𝑦�‾�
2

𝑖𝑖

,

                                                              (7) 

where 𝑁𝑁 is the number of samples, 𝑦𝑦𝑖𝑖 is the ground-truth affinity, and 𝑦𝑦�𝑖𝑖 is the predicted affinity. 
For classification-oriented evaluation, affinities were binarized at the threshold pAffinity > 7 >7 >7 
to indicate strong binders. We then reported AUC,precision, recall, and F1-score to assess model 
performance in distinguishing active vs. inactive compounds. 

4.3. Experimental Results 
We compared our FCNN framework with several baseline methods, including Random Forest 

(RF)Support Vector Regression (SVR),and Gradient Boosted Trees (XGBoost).As shown in Table 3, 
our method consistently outperformed the baselines across all metrics. In particular, the proposed 
FCNN achieved the lowest RMSE and MAE, and the highest Pearson correlation  , demonstrating 
superior regression accuracy. On the classification task, our method achieved an AUC of 
0.92,compared to 0.84 (RF),0.81 (SVR), and 0.86 (XGBoost). These results confirm that 
incorporating protein structural features alongside molecular descriptors provides a significant 
advantage in affinity prediction. 
Table 3: Performance comparison between our FCNN framework and baseline models.↓ indicates 

lower is better; ↑ indicates higher is better. 

Method RMSE ↓ MAE ↓ r ↑ AUC ↑ 
RF 1.32 1.04 0.71 0.84 
SVR 1.45 1.12 0.67 0.81 
XGBoost 1.28 0.98 0.74 0.86 
FCNN (Ours) 1.05 0.82 0.81 0.92 

4.4. Ablation Studies 
To assess the contribution of different feature components, we conducted ablation experiments. 

Three model variants were evaluated: (1) ligand-only model using molecular descriptors (2) protein-

485



only model using transporter features, and (3) the full model with both ligand and protein features. 
Results are summarized in Table 4.The ligand-only model achieved moderate performance RMSE= 
1. 32 = 0.70] ), while the protein-only model performed slightly better (RMSE= 1. 25 ,  𝑟𝑟 = 0.73 . 
The full integrated model achieved the best performance (𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 = 𝟏𝟏.𝟎𝟎𝟎𝟎 =1.05 =1.05 = 0.81 ), 
highlighting the complementary roles of ligand descriptors and protein structural features. This 
confirms that integrating both modalities is critical for accurate affinity prediction. 

Table 4: Ablation study showing the effect of different feature sets. 

Model Variant RMSE ↓ MAE ↓ r ↑ 
Ligand-only 1.32 1.08 0.70 
Protein-only 1.25 1.00 0.73 
Full model (Ligand+Protein) 1.05 0.82 0.81 

5. Discussion 
The results of our study highlight several important findings. First, the integration of ligand-based 

descriptors with protein-derived features clearly improves prediction performance compared with 
traditional QSAR or ligand-only baselines. This indicates that protein structural information, even 
when derived from computational predictions such as AlphaFold, provides. complementary signals 
that are critical for accurately modeling ligand transporter interactions. Second, the consistent 
improvements observed across multiple transporters suggest that our framework is not limited to a 
specific target, but can generalize to a broader range of neurotransmitter transporters associated with 
mood regulation. This generalizability is essential for practical drug discovery pipelines where new 
targets are frequently investigated 

Nevertheless, some limitations should be noted. The affinity data collected from public resources 
may contain inconsistencies due to different assay protocols, which introduces noise into the training 
process. In addition, our FCNN architecture captures global feature interactions but does not 
explicitly model spatial contacts between ligand atoms and protein residues. More advanced 
architectures, such as graph neural networks or attention-based models, could better capture fine-
grained molecular interactions. Furthermore, the current framework focuses solely on static features, 
while dynamic aspects of protein-ligand interactions (e.g., conformational. changes observed in 
molecular dynamics simulations) remain unmodeled. Addressing these limitations will be important 
for future work. 

6. Conclusion 
In this paper, we presented a fully connected neural network framework that integrates molecular 

descriptors and protein structural features for predicting ligand-transporter binding afinity. Our 
approach outperforms baseline methods and demonstrates the value of combining ligand and protein 
modalities. This framework offers a scalable and effective computational tool. for screening candidate 
anxiolytic drugs, with the potential to accelerate discovery and reduce reliance on costly trial-and-
error methods. In future work, we aim to extend this approach to more diverse protein families and 
explore hybrid models that incorporate sequence, structure and dynamics for improved affinity 
prediction. 
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